ایجاد یک سیستم خبره به منظور شناسایی مدل مناسب برای پیش بینی سری های زمانی
Authors
abstract
وجود الگوهای متنوع برای مدل سازی و پیش بینی سری های زمانی، باعث می شود انتخاب ساختار و تحلیل این گونه مدل ها با سعی و خطا، صرف زمان زیاد و مبتنی بر نظر افراد خبره انجام شود. با توجه به ماهیت شرطی رویه های شناسایی مدل پیش بینی سری های زمانی، در این مقاله سعی می شود با ایجاد تعدادی موتور جستجو، تکنیک تجزیه و تحلیل مشخص شود و در مرحله بعد، با فرض معین بودن تکنیک مناسب، پایگاه دانش به گونه ای توسعه داده شود که در نهایت امکان نسبت دادن مدل مناسب به داده های در دست مطالعه، فراهم شود. پس از تعیین نوع روش، میزان برازش مدل مورد نظر بر داده های تاریخی به وسیله شاخص های مناسب اندازه گیری می شود. در صورت مناسب بودن این شاخص ها، با به کارگیری مدل انتخاب شده، پیش بینی دوره های بعدی به دست آمده و می توان تناسب مدل پیش بینی را سنجید. سپس با تکرار این فرآیند و تغییر پاسخ سؤالات در مراحلی که حالت قطعی برای جواب وجود ندارد، به تعداد کافی مدل انتخاب کرده و از بین آنها برترین مدل بر گزیده می شود. در انتها، پیاده سازی سیستم خبره و اجرای مدل روی داده های نمونه به صورت مطالعه موردی، کارآیی و اعتبار روش پیشنهادی را تأیید می کند.
similar resources
ایجاد یک سیستم خبره به منظور شناسایی مدل مناسب برای پیشبینی سریهای زمانی
وجود الگوهای متنوع برای مدلسازی و پیشبینی سریهای زمانی، باعث میشود انتخاب ساختار و تحلیل این گونه مدلها با سعی و خطا، صرف زمان زیاد و مبتنی بر نظر افراد خبره انجام شود. با توجه به ماهیت شرطی رویههای شناسایی مدل پیشبینی سریهای زمانی، در این مقاله سعی میشود با ایجاد تعدادی موتور جستجو، تکنیک تجزیه و تحلیل مشخص شود و در مرحله بعد، با فرض معین بودن تکنیک مناسب، پایگاه دانش به گونهای توسعه...
full textچگونه یک مدل مناسب برای دادههای سری زمانی انتخاب کنیم؟
The time series is a collection of observation data that are arranged according to time. The main purpose of setting up a time series is to predict future values. The first step in time series data is graphed. Using graphs can provide general information such as uptrend or downtrend, seasonal patterns, periodic presence, and outliers in time series graphs. After graphing the data, if a good for...
full textبررسی معیارهای متفاوت برای منظم کردن اجزاهای اصلی به منظور ایجاد یک مدل QSPR برای پیش بینی نقطه های ذوب
براساس اهمیت پیش بینی نقطه های ذوب ترکیب ها، در این مقاله سعی شد که برای دسته وسیعی از ترکیب ها مدل مناسبی که توانایی پیش بینی نقطه های ذوب را در حد مطلوبی داشته باشد، ارایه شود. برای این منظور 4173 ترکیب شیمیایی با ساختارهای متنوع گزارش شده در مقاله های قبلی، انتخاب و برای توصیف ساختار آن ها از یک دسته 202 تایی از توصیفکننده های 2D و 3D استفاده شد. این دسته داده ها به دو دسته آموزش و دسته ...
full textکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
full textمقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران
با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی زمانی1371:1 تا 1385:11 بوده و از شر...
full textکاربرد قواعد کشفی و الگوریتم ژنتیک در ساخت مدل ARMA برای پیش بینی سری زمانی
برای پیشبینی سری زمانی ابتدا باید مدل مناسبی از آن ساخته شود. تعیین ابعاد و تخمین پارامترهای مناسب برای مدل ARMA سری زمانی، چالشی است که علاوه بر روشهای متداول آماری، از طریق محاسبات هوشمند نیز به آن توجه شده است. در این مقاله استفاده از الگوریتم ژنتیک برای تخمین پارامترهای مدل ARMA و قواعد کشفی برای تعیین ابعاد مدل ارائه میشود. قواعد کشفی براساس ویژگیهای سری زمانی استخراج میشوند. داده...
full textMy Resources
Save resource for easier access later
Journal title:
نشریه مهندسی صنایعPublisher: پردیس دانشکده های فنی
ISSN 2423-6896
volume 48
issue Special Issue 2014
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023